84 research outputs found

    Extreme Energy Cosmic Rays: Bottom-up vs. Top-down scenarii

    Get PDF
    We present an overview on extreme energy cosmic rays (EECR) and the fundamental physics connected with them. The top-down and bottom-up scenarii are contrasted. We summarize the essential features underlying the top-down scenarii for EECR, namely, the lifetime and the mass {\bf imposed} to the heavy relics whatever they be: topological and non-topological solitons, X-particles, cosmic defects, microscopic black-holes, fundamental strings. An unified formula for the quantum decay rate of all these objects was provided in hep-ph/0202249. The key point in the top-down scenarii is the necessity to {\bf adjust} the lifetime of the heavy object to the age of the universe. The natural lifetimes of such heavy objects are, however, microscopic times associated to the GUT energy scale (sim 10^{-28} sec. or shorter); such heavy objects could have been abundantly formed by the end of inflation and it seems natural they decayed shortly after being formed. The arguments produced to {\bf fine tune} the relics lifetime to the age of the universe are critically analyzed. The annihilation scenario (`Wimpzillas') is analyzed too. Top-down scenarii based on networks of topological defects are strongly disfavored at the light of the recent CMB anisotropy observations. We discuss the acceleration mechanisms of cosmic rays,their possible astrophysical sources and the main open physical problems and difficulties in the context of bottom-up scenarii, and we conclude by outlining the expectations from future observatories like EUSO and where the theoretical effort should be placed.Comment: LaTex, 16 pages, 2 .eps figures. The annihilation scenario (Wimpzillas) is included and the discussion on gamma ray bursts improved. Based on lectures at the Fourth International Workshop on `New Worlds in Astroparticle Physics' in Faro, Portugal, September 2002, at the 9th Course on Astrofundamental Physics of the Chalonge School, Palermo, Italia, September 2002 and at the SOWG EUSO meeting, Roma, Italia, November 200

    Baryon Washout, Electroweak Phase Transition, and Perturbation Theory

    Get PDF
    We analyze the conventional perturbative treatment of sphaleron-induced baryon number washout relevant for electroweak baryogenesis and show that it is not gauge-independent due to the failure of consistently implementing the Nielsen identities order-by-order in perturbation theory. We provide a gauge-independent criterion for baryon number preservation in place of the conventional (gauge-dependent) criterion needed for successful electroweak baryogenesis. We also review the arguments leading to the preservation criterion and analyze several sources of theoretical uncertainties in obtaining a numerical bound. In various beyond the standard model scenarios, a realistic perturbative treatment will likely require knowledge of the complete two-loop finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte

    The Spectrum of Goldstini and Modulini

    Get PDF
    When supersymmetry is broken in multiple sectors via independent dynamics, the theory furnishes a corresponding multiplicity of "goldstini" degrees of freedom which may play a substantial role in collider phenomenology and cosmology. In this paper, we explore the tree-level mass spectrum of goldstini arising from a general admixture of F-term, D-term, and almost no-scale supersymmetry breaking, employing non-linear superfields and a novel gauge fixing for supergravity discussed in a companion paper. In theories of F-term and D-term breaking, goldstini acquire a mass which is precisely twice the gravitino mass, while the inclusion of no-scale breaking renders one of these modes, the modulino, massless. We argue that the vanishing modulino mass can be explained in terms of an accidental and spontaneously broken "global" supersymmetry.Comment: 10 pages, 2 figures; v2: typo corrected, references updated; v3: version to appear in JHE

    Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos

    Full text link
    We discuss a new variant of the E6 inspired supersymmetric standard model (E6SSM) in which the two inert singlinos are exactly massless and the dark matter candidate has a dominant bino component. A successful relic density is achieved via a novel mechanism in which the bino scatters inelastically into heavier inert Higgsinos during the time of thermal freeze-out. The two massless inert singlinos contribute to the effective number of neutrino species at the time of Big Bang Nucleosynthesis, where the precise contribution depends on the mass of the Z' which keeps them in equilibrium. For example for mZ' > 1300 GeV we find Neff \approx 3.2, where the smallness of the additional contribution is due to entropy dilution. We study a few benchmark points in the constrained E6SSM with massless inert singlinos to illustrate this new scenario.Comment: 24 pages, revised for publication in JHE

    Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures

    Get PDF
    Integration of superpartners out of the spectrum induces potentially large contributions to Yukawa couplings. These corrections, the supersymmetric threshold corrections, therefore influence the CKM matrix prediction in a non-trivial way. We study effects of threshold corrections on high-scale flavor structures specified at the gauge coupling unification scale in supersymmetry. In our analysis, we first consider high-scale Yukawa textures which qualify phenomenologically viable at tree level, and find that they get completely disqualified after incorporating the threshold corrections. Next, we consider Yukawa couplings, such as those with five texture zeroes, which are incapable of explaining flavor-changing proceses. Incorporation of threshold corrections, however, makes them phenomenologically viable textures. Therefore, supersymmetric threshold corrections are found to leave observable impact on Yukawa couplings of quarks, and any confrontation of high-scale textures with experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE

    MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology

    Get PDF
    We explore the implications of electroweak baryogenesis for future searches for permanent electric dipole moments in the context of the minimal supersymmetric extension of the Standard Model (MSSM). From a cosmological standpoint, we point out that regions of parameter space that over-produce relic lightest supersymmetric particles can be salvaged only by assuming a dilution of the particle relic density that makes it compatible with the dark matter density: this dilution must occur after dark matter freeze-out, which ordinarily takes place after electroweak baryogenesis, implying the same degree of dilution for the generated baryon number density as well. We expand on previous studies on the viable MSSM regions for baryogenesis, exploring for the first time an orthogonal slice of the relevant parameter space, namely the (tan\beta, m_A) plane, and the case of non-universal relative gaugino-higgsino CP violating phases. The main result of our study is that in all cases lower limits on the size of the electric dipole moments exist, and are typically on the same order, or above, the expected sensitivity of the next generation of experimental searches, implying that MSSM electroweak baryogenesis will be soon conclusively tested.Comment: 23 pages, 10 figures, matches version published in JHE

    CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments

    Full text link
    We study electroweak baryogenesis and electric dipole moments in the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM. Significant qualitative and quantitative differences from MSSM baryogenesis arise due to the presence of new CP-violating phases and to the relaxation of constraints on the supersymmetric spectrum (in particular, both stops can be light). We find: (1) spontaneous baryogenesis, driven by a change in the phase of the Higgs vevs across the bubble wall, becomes possible; (2) the top and stop CP-violating sources can become effective; (3) baryogenesis is viable in larger parts of parameter space, alleviating the well-known fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole moments should be measured if experimental sensitivities are improved by about one order of magnitude.Comment: 33 pages, 6 figure

    Goldstini

    Get PDF
    Supersymmetric phenomenology has been largely bound to the hypothesis that supersymmetry breaking originates from a single source. In this paper, we relax this underlying assumption and consider a multiplicity of sectors which independently break supersymmetry, thus yielding a corresponding multiplicity of goldstini. While one linear combination of goldstini is eaten via the super-Higgs mechanism, the orthogonal combinations remain in the spectrum as physical degrees of freedom. Interestingly, supergravity effects induce a universal tree-level mass for the goldstini which is exactly twice the gravitino mass. Since visible sector fields can couple dominantly to the goldstini rather than the gravitino, this framework allows for substantial departures from conventional supersymmetric phenomenology. In fact, this even occurs when a conventional mediation scheme is augmented by additional supersymmetry breaking sectors which are fully sequestered. We discuss a number of striking collider signatures, including various novel decay modes for the lightest observable-sector supersymmetric particle, gravitinoless gauge-mediated spectra, and events with multiple displaced vertices. We also describe goldstini cosmology and the possibility of goldstini dark matter.Comment: 14 pages, 7 figures; references adde

    Discovering the constrained NMSSM with tau leptons at the LHC

    Full text link
    The constrained Next-to-Minimal Supersymmetric Standard Model (cNMSSM) with mSugra-like boundary conditions at the GUT scale implies a singlino-like LSP with a mass just a few GeV below a stau NLSP. Hence, most of the squark/gluino decay cascades contain two tau leptons. The gluino mass >~ 1.2 TeV is somewhat larger than the squark masses of >~ 1 TeV. We simulate signal and background events for such a scenario at the LHC, and propose cuts on the transverse momenta of two jets, the missing transverse energy and the transverse momentum of a hadronically decaying tau lepton. This dedicated analysis allows to improve on the results of generic supersymmetry searches for a large part of the parameter space of the cNMSSM. The distribution of the effective mass and the signal rate provide sensitivity to distinguish the cNMSSM from the constrained Minimal Supersymmetric Standard Model in the stau-coannihilation region.Comment: 18 pages, 3 Figure

    A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model

    Get PDF
    We analyze the constraints imposed by experimental upper limits on electric dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating (MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard CP-violating phases, in addition to the CP-odd QCD vacuum phase \theta_QCD, cancellations may occur among the CP-violating contributions to the three measured EDMs, those of the Thallium, neutron and Mercury, leaving open the possibility of relatively large values of the other CP-violating observables. We develop a novel geometric method that uses the small-phase approximation as a starting point, takes the existing EDM constraints into account, and enables us to find maximal values of other CP-violating observables, such as the EDMs of the Deuteron and muon, the CP-violating asymmetry in b --> s \gamma decay, and the B_s mixing phase. We apply this geometric method to provide upper limits on these observables within specific benchmark supersymmetric scenarios, including extensions that allow for a non-zero \theta_QCD.Comment: 34 pages, 16 eps figures, to appear in JHE
    corecore